
12-1

Variational Autoencoders (VAE’s)

Lecture 12

Lecturer: Haim Permuter Scribe: Moshe Bunker

SUMMARY

In just three years, Variational Autoencoders (VAEs),section IV,[3], [1] have emerged

as one of the most popular approaches to unsupervised learning of complicated distribu-

tions. VAEs are appealing because they are built on top of standard function approximators

(neural networks), and can be trained with stochastic gradient descent. VAEs have already

shown promise in generating many kinds of complicated data, including handwritten

digits, faces, house numbers CIFAR images, physical models of scenes, segmentation,

and predicting the future from static images. This lecture introduces the intuitions behind

VAEs, explains the mathematics behind them, and describes some empirical behavior.

No prior knowledge of variational Bayesian methods is assumed.

INTRODUCTION

Variational Autoencoders belong to the family of generative models [1]. The generator

of VAEs is able to produce meaningful outputs while navigating its continuous latent

space. The possible attributes of the decoder outputs are explored through the latent

vector. VAEs attempt to model the input distribution from a decodable continuous latent

space. Within VAEs, the focus is on the variational inference of latent codes.

Therefore, VAEs provide a suitable framework for both learning and efficient Bayesian

inference with latent variables. For example, VAEs with disentangled representations

enable latent code reuse for transfer learning. In terms of structure, VAE bears a

resemblance to an autoencoder. It is also made up of an encoder (also known as a

recognition or inference model) and a decoder (also known as a generative model). Both

VAEs and autoencoders attempt to reconstruct the input data while learning the latent



12-2

Decoder

Input

x

Output

x=d(z)

z=h(x)

Encoder

Latent

Variable

ˆ

Fig. 1. Illustration of an autoencoder, dimensionality reduction principle can be seen in the diagram

vector. However, unlike autoencoders, the latent space of VAE is continuous, and the

decoder itself is used as a generative model.

I. AUTO ENCODER

In its simplest form, an autoencoder [3] will learn the representation or code by trying

to copy the input to output. However, using an autoencoder is not as simple as copying the

input to output. Otherwise, the neural network would not be able to uncover the hidden

structure in the input distribution.An autoencoder will encode the input distribution into a

low-dimensional tensor, which usually takes the form of a vector. This will approximate

the hidden structure that is commonly referred to as the latent representation, code, or

vector. This process constitutes the encoding part. The latent vector will then be decoded

by the decoder part to recover the original input.

As a result of the latent vector being a low-dimensional compressed representation

of the input distribution, it should be expected that the output recovered by the decoder

can only approximate the input. The dissimilarity between the input and the output can

be measured by a loss function. But why would we use autoencoders? Simply put,

autoencoders have practical applications both in their original form or as part of more

complex neural networks. They’re a key tool in understanding the advanced topics of

deep learning as they give you a low-dimensional latent vector, therefore are used to

dimension reduction [3].

Definition 1 (dimension reduction) The dimension reduction is the process of reducing



12-3

the number of features that describe some data. This reduction is done either by selection

(only some existing features are conserved) or by extraction (a reducednumber of new

features are created based on the old features) and can be useful in many situations

that require low dimensional data (data visualisation, data storage,heavy computation. . . ).

Although there exists many different methods ofdimensionality reduction, we can set a

global framework that is matched by most of these methods.

Here, we should however keep two things in mind. First, an important dimensionality

reduction with no reconstruction loss often comes with a price: the lack ofinterpretable

and exploitable structures in the latent space (lack of regularity) [2]. Second, most of

the time the final purpose of dimensionality reduction is not to onlyreduce the number

of dimensions of the data but to reduce this number of dimensions while keeping the

major part of the data structure information in the reducedrepresentations. For these two

reasons, the dimension of the latent space and the“depth” of autoencoders (that define

degree and quality of compression) have to becarefully controlled and adjusted depending

on the final purpose of the dimensionalityreduction.

II. VARIATIONAL AUTOENCODERS IDEA

In a generative model, we’re often interested in approximating the true distribution of

our inputs using neural networks:

z = f(x) (1)

In machine learning, to perform a certain level of inference, we’re interested in finding

pθ(x, z) ,a joint distribution between inputs - x and latent variables - z, when θ represents

the parameters determined during training, The latent variables are not part of the dataset

but instead encode certain properties observable from inputs. pθ(x, z) is practically a

distribution of input data points and their attributes. pθ(x) can be computed from the

marginal distribution:

pθ(x) =

∫
pθ(x, z)dz (2)



12-4

In other words, considering all of the possible attributes, we end up with the distribution

that describes the inputs. The problem is that Equation 2 is intractable. The equation does

not have an analytic form or an efficient estimator. It cannot be differentiated with respect

to its parameters. Therefore, optimization by a neural networkis not feasible. Using Bayes’

theorem, we can find an alternative expression for Equation 2:

pθ(x) =

∫
pθ(x | z)p(z)dz (3)

When p(z) is a prior distribution over z.

In practice, if we try to build a neural network to approximate pθ(x | z) without a

suitable loss function, it will just ignore z and arrive at a trivial solution, pθ(x | z) = pθ(x).

Therefore, Equation 3 does not provide us with a good estimate of pθ(x). Alternatively,

Equation 2 can also be expressed as:

pθ(x) =

∫
pθ(z | x)p(x)dz (4)

However, pθ(z | x) is also intractable. The goal of a VAE is to find a tractable distribution

that closely estimates pθ(z | x) an estimate of the conditional distribution of the latent

attributes, z, given the input, x (later in the lecture we will define a normal distribution).

III. VARIATIONAL IFERENCE

We want to compute p(zm | xn), but it is very difficult to compute.

p(zm|xn) = (zm, xn)

p(xn)
=

p(zm)P (xn|zn)∫
P (zm)p(zn|zm)dzn

(5)

However, we can use the inference network to compute an approximate poste-

rior, q(zm | xn). In this section, we discuss variational inference, which is another

optimization-based approach to posterior inference, but which has much more modeling

flexibility (and thus can give a much more accurate approximation).variational inference

attempts to approximate an intractable probability distribution, such as p(zm|xn), with one

that is tractable, q(zm), so as to minimize some discrepancy D between the distributions:

arg min
q(zm)∈Qθ

D
(
q(zm)‖p(zm|xn)

)
(6)



12-5

where Q is some tractable family of distributions (e.g., multivariate Gaussian). we define

D to be the divergence, then we can derive a lower bound to the log marginal likelihood:

= argmin Eq(zm)
[log q(zm)]− Eq

[
log

p(zn, xn)

p(xn)

]
= argmin Eq

(
log q(zm

)
− Eq[log p(zm, xn)] + log p(xn)

(7)

By using the definition of evidence lower bound or ELBO:

ELBO = Eq[log p(z
m, xn)]− Eq

[
log q(zm)

]
(8)

We can present the expression in Equation 8:

ELBO = Eq[log p(z
m, xn)]− Eq

[
log q(zm)

]
= Eq[log p(z

m)] + Eq[log p(x
n | zm)]− Eq

[
log q(zm)

]
= −D

(
q(zm)‖p(zm)

)
+ Eq[log p(x

n | zm)]

(9)

Therefore, we will return to Equation 6 and place the development we made in Equation

8 We get that the minimum condition becomes the maximum on the expression:

max

[
Eq[log p(x

n | zm)]−D
(
q(zm)‖p(zm)

]
(10)

IV. VARIATIONAL AUTO ENCODERS

Let’s now make the assumption that p(z) is a standard Gaussian distribution and that

p(x|z) is a Gaussian distribution whose mean is defined by a deterministic function f of

the variable of z and whose covariance matrix has the form of a positive constant c that

multiplies the identity matrix I . The function f is left unspecified for the moment and

that will be chosen later. Thus, we have

p(x | z) ∼ N (f(z), cI), c > 0

p(z) ∼ N (0, I)
(11)

Here we are going to approximate p(z|x) by a Gaussian distribution qx(z) whose mean

and covariance are defined by two functions, g and h, of the parameter x. These two



12-6

Encoder Random Sample Latent
 Space

Reconstructed Data

Decoder

Input Data Mean, Variance Encoded Data

Diagonal
Multivariate
Gaussian

µ¹

µ²

σ¹

σ²

Fig. 2. Schematic illustration of a VAE

functions are supposed to belong, respectively, to the families of functions G and H that

will be specified later but that are supposed to be parametrised. Thus we can denote

q(z | x) ∼ N (g(x), h(x)) (12)

So, we have defined this way a family of candidates for variational inference and need

now to find the best approximation among this family by optimising the functions g and

h (in fact, their parameters) to minimise the divergence between the approximation and

the target p(z|x). In other words, we are looking for the optimal g∗ and h∗ such that:



12-7

(g∗, h∗) = arg ming,hD
(
q(z)‖p(z|x)

)
= arg ming,h Eq

(
log q(z)

)
− Eq

[
log

p(x|z)p(z)
p(x)

]
= arg ming,h Eq

(
log q(z)

)
− Eq

[
log p(x, z)

]
= arg ming,h Eq

(
log q(z)

)
− Eq

[
log p(z)

]
− Eq

[
log p(x|z)

]
= arg ming,h D

(
q‖p
)
− Eq

[
log p(x|z)

]
= arg ming,h[−ELBO]

= arg ming,h Eq

[(x− f(z))2
2c

]
+D

(
N (g(x), h(x))‖N(0, I)

)

(13)

Given the encoder and decoder models, there is one more problem to solve before

we can build and train a VAE, the stochastic sampling block, which generates the latent

attributes. In the next section, we will discuss this issue and how to resolve it using the

reparameterization trick.

V. REPARAMETERIZATION TRICK

The left-hand side of Figure 3 below shows the VAE network. The encoder takes

the input, and estimates the mean, g(x), and the standard deviation, h(x), of the

multivariate Gaussian distribution of the latent vector, z, to reconstruct the input as x̃.

This seems straightforward until the gradient updates happen during backpropagation.

Backpropagation gradients will not pass through the stochastic Sampling block. While

it’s fine to have stochastic inputs for neural networks, it’s not possible for the gradients

to go through a stochastic layer.

The solution to this problem is to push out the Sampling process as the input, as shown

on the right side of Figure 3. Then, compute the sample as:

z = g(x) + ε ∗ h(x) (14)

If ε and h(x) are expressed in vector format, then ε∗h(x) is element-wise multiplication.

Using Equation 14, it appears as if sampling is directly coming from the latent space



12-8

g(x) h(x)g(x) h(x)

EncoderEncoder

xx

Sampling

Sampling

Decoder Decoder

x x

N(0,1)

ɛ
+ *

̃̃

Fig. 3. on the left side A VAE network [2] without the reparameterization trick, on the right is a diagram with the

reparameterization trick

as originally intended. This technique is better known as the Reparameterization trick.

With Sampling now happening at the input, the VAE network can be trained using the

familiar optimization algorithms, that we have learned in previous lectures.

REFERENCES

[1] Carl Doersch, Carnegie Mellon/ UC Berkeley. Tutorial on Variational Autoencoders. Addison-Wesley, Reading,

Massachusetts, 1993.

[2] Rowel Atienzaörper. [Advanced Deep Learning with Keras]. Birmingham - Mumbai, Packt Publishing

Ltd,Birmingham B3 2PB, UK, 2018.

[3] Joseph Rocca - Understanding Variational Autoencoders (VAEs), sep 24, 2019.

https://towardsdatascience.com/˜understanding-variational-autoencoders-vaes-f70510919f73


